

NYS Mesonet 518/442-MESO ETEC Suite 360 1220 Washington Avenue Albany, New York 12226 Contact: June Wang (jwang20@albany.edu)

New York State Mesonet Profiler Network Data

The data described here are created by New York State Mesonet at University at Albany. In the event that the data are used for any form of publications, please cite Shrestha et al (2021, 2022) and use the following statement in the acknowledgement:

"This research is made possible by the New York State (NYS) Mesonet. Original funding for the NYS Mesonet was provided by Federal Emergency Management Agency grant FEMA-4085-DR-NY, with the continued support of the NYS Division of Homeland Security & Emergency Services; the state of New York; the Research Foundation for the State University of New York (SUNY); the University at Albany, SUNY; the Atmospheric Sciences Research Center (ASRC) at SUNY Albany; and the Department of Atmospheric and Environmental Sciences (DAES) at SUNY Albany."

Details about the Profiler Network, instrumentations and their retrieval methods can also be found at Shrestha et al., 2021, "Overview and Applications of New York State Mesonet Profiler Network", Journal of Applied Meteorology and Climatology.

The evaluation of the Profiler Network data is presented at Shrestha et al., 2022, "Evaluation of the New York State Mesonet Profiler Network data", Atmospheric Measurement Techniques.

1. Introduction

The New York State (NYS) Mesonet (<u>http://nysmesonet.org</u>) is a new advanced, statewide weather station network that provides unprecedented weather information across the state. This network is the first of its kind in New York. Unique in the world is a subset of 17 stations known as the Profiler Network (see map below). Site metadata including latitude, longitude, elevation, county, and commissioned date are listed in Appendix A with additional information provided at: http://nysmesonet.org/about/sites#network=profiler&stid=prof_alba

2. Instrumentation

The 17 station Profiler Network sites are equipped with sensors for measuring vertical profiles of wind, temperature, moisture, and liquid water. These sensors include a Doppler LiDAR, microwave radiometer, and environmental sky imaging radiometer (eSIR).

Every Profiler station consists of two deployment suites: (1) A Standard Site installed at ground level; and (2) A Profiler Site installed on a nearby rooftop, or as in the case at Albany, at the local airport. Most Profiler sites are deployed within 0.5 km of a Standard site. Profiler site sensors are connected directly to utility power and Ethernet. This ensures that the high volume of data at each Profiler site can be accessed in real-time. Some processing of the Profiler data is done at the site before transmission to UAlbany.

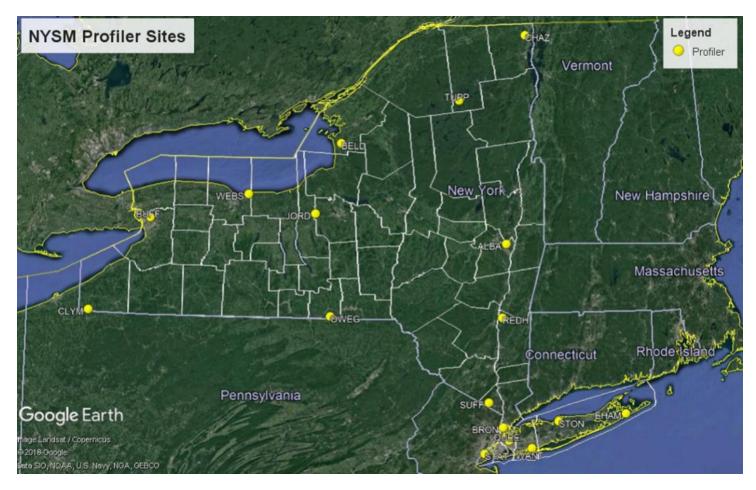


Fig. 1: Network of 17 Profiler stations, each equipped with a LiDAR, microwave radiometer and environmental sky imager radiometer (eSIR).

A **Doppler LiDAR** (Light Detection and Ranging) WLS-100S, a product of Leosphere, is an active remote sensing instrument that uses eye-safe laser pulses in the near infrared ($\lambda = 1540$ nm). The LiDAR emits short laser pulses into the atmosphere and records the signal backscattered from moving particles such as aerosols and clouds along the line of sight. Using the heterodyne detection technique, Carrier-to-Noise Ratio (CNR) is calculated from the backscattered signal strength, radial wind speed is calculated from Doppler frequency shift and range is calculated from time of flight. The CNR is directly related to aerosol backscatter (β). The primary output from the instrument includes radial wind speed and CNR (a modulated signal for Signal-to-Noise Ratio or SNR). The LiDAR is set to collect data using the Doppler Beam Swinging (DBS) scan mode which makes four cardinal direction scans at elevation of 75° and one vertical scan in about 20 s. The three-dimensional wind fields (u, v, and w) are derived using simple trigonometric relations from those DBS scans. The data availability and the maximum measurement range depend upon the aerosol concentration and/or meteorological conditions.

The LiDAR weighs 232 kg (511 lbs), and measures approximately 1008 x 814 x 1365 mm (3.3' x 2.7' x 4.5') (L x W x H). The LiDARs are maintained in collaboration with Renewable NRG Systems and Vaisala.

The LiDAR has a vertical range up to 7 km AGL with a vertical resolution of 25-50 m and a temporal resolution of 4-5 s. The manufacturer applies the CNR threshold value of -27 dB to obtain a radial wind speed accuracy of approximately 0.5 m/s with a range of -30 to +30 m/s and a wind direction accuracy of about 2°. It can operate in temperatures from -30° C to +45° C and humidity from 10% to 100%. All data above the CNR threshold value are averaged over 10-min periods.

Averaged data are displayed in real-time and typically provided to users, whereas 4-5 s data are available upon special request.

The vertical resolution of the LiDAR is 25 m from 100 m to 1000 m and 50 m from 1000 m to 7000 m and the temporal resolution is \sim 20 s (full DBS scan) which can vary sometimes due to dwell time, wipes, lubrication etc.

A **microwave radiometer** (MWR) MP-3000A, a product of Radiometrics, is a passive remote sensing instrument with 35 factory calibrated channels of 21 K-band (22-30 GHz) and 14 V-band (51-59 GHz) that measures brightness temperature in water vapor and oxygen bands. Vertical profiles of temperature, relative humidity, water vapor density and liquid density are retrieved using a combination of a neural network and radiative transfer model, trained by radiosonde data. In addition, the MWR also provides cloud base height (CBH), integrated water vapor, total liquid water path (LWP), and cloud liquid water content.

The MWR weighs 27 kg (60 lbs) and measures approximately 86 x 53 x 31 mm (L x W x H).

The MWR has a vertical range up to 10 km AGL with a vertical resolution of 50 - 250 m and a temporal resolution of ~2 minutes. The temperature accuracy is about $0.5 - 2^{\circ}$ C and the relative humidity accuracy is about 2%, with both decreasing from the surface upward. It can operate in temperatures from -40° C and +45° C, with a total power consumption of < 500 W. The data collected and archived include: (i) Level 0 – raw data; (ii) Level 1 – meteorological sensor data and brightness temperature; (iii) Level 2 – Temperature, water vapor, liquid water, RH profiles and column integrated vapor and liquid; and (iv) Calibration data. The Level II data are derived by the vendor using the Level I data and the neural network method trained by the historical radiosonde data (Solheim, et al., 1998, Ware et al., 2003).

Solheim, F., Godwin, J. R., Westwater, E. R., Han, Y., Keihm, S. J., Marsh, K., and Ware, R.: Radiometric profiling of temperature, water vapor, and liquid water using various inversion methods, Radio Science, 33(2), 393–404, <u>https://doi.org/10.1029/97RS03656</u>, 1998.

Ware, R., Carpenter, R., Güldner, J., Liljegren, J., Nehrkorn, T., Solheim, F., and Vandenberghe, F.: A multichannel radiometric profiler of temperature, humidity, and cloud liquid, Radio Science, 38(4), 8079, https://doi.org/10.1029/2002RS002856, 2003.

Vertical profiles are generated from averages of observations calculated over 10-minute periods. Raw data are collected from across the network and transmitted to the University at Albany, where the data are averaged into 10-minute periods, organized into a given file format, and then archived and disseminated to users. The list of variables archived, and their units are described in Section 3 below. As placeholders for bad/missing data, netCDF files use the FillValue attribute "NaN".

MWR sensors require regular calibration. The K-band is calibrated using a "tip calibration", which is done approximately every 3 weeks and is applied remotely. The V-band is calibrated using a liquid nitrogen calibration. This must be done on site and is completed about once every 6 months. During sensor calibration, the MWR data are not collected. The dates of sensor calibrations are kept online at http://nysmesonet.org/networks/profiler/calibration.

The vertical resolution of the MWR data is 50 m from 0 to 500 m, 100 m from 500 to 2000 m and 250 m from 2000 to 10000 m with the temporal resolution of ~2 minutes. Ten minutes averaged data are provided to the users.

An **environmental Sky Imaging Radiometer** (eSIR) is a multi-channel (415, 500, 610, 670, 870, 940, and 1020 nm) sensor that measures spectral direct and diffuse irradiance during the daylight hours using a shadow band technique. Such spectral irradiances can be converted into aerosol optical depth (AOD) and Angstrom Exponent (AE) for the application in aerosol studies. In addition, it also provides fish-eye sky images along with sensors for temperature, pressure,

humidity and a GPS sensor for latitude, longitude, and elevation. Each sun photometer has been built in-house by research scientists in the New York State Mesonet and Atmospheric Sciences Research Center (ASRC).

Temporal resolution of the eSIR data is 5 minutes and data are only measured during daylight hours.

3. Data format

3a. Processed data format

Profiler data are provided in CSV format by default, or NetCDF format upon request. A list of Profiler data variables is listed in Appendix B. The short names of variables are used in the data and are explained in the table below. All files are organized according to date, i.e. each file contains all data for that day at every station requested. These files are provided with 10-minute averaging and contain both LiDAR and MWR data. For CSV files, the name conventions are yyyymmdd-2d.csv and yyyymmdd-3d.csv. The "2d" files contain the variables that are **not** dependent on height. The "3d" files contain the variables that **are** dependent on height.

3b. Raw data format

Raw data are only provided on special request. For the raw LiDAR NetCDF files, the name convention is yyyymmdd.nc, where yyyy is 4-digit year, mm for numeric month, dd for date. For the MWR NetCDF files, the name convention is yyyymmdd_lv2_PROF_[station ID], where the date convention is the same, lv2 is the Level 2 MWR data, and PROF_[station ID] is the station. The date is specified as UTC (Coordinated Universal Time), not LST (local solar time). Eastern Standard Time (EST) is 5 hours behind UTC, and Eastern Daylight Time (EDT) is 4 hours behind UTC. The variable names in the NetCDF file are documented via attributes within the file.

4. Special notes on the data:

1) Sensor and/or system failures are not uncommon as the Profiler equipment are sensitive to a variety of environmental factors. Data gaps may be due to sensor failures; calibration errors; power failures; and/or communication failures. Please check the data availability as listed in Appendices C and D.

2) When using the MWR data, please note the time since last calibration. The sensor may drift out of calibration with time. TIP calibrations are done as often as every 2 weeks, whereas LN2 calibrations are done around every 6 months. The dates of sensor calibrations are kept online at <u>http://nysmesonet.org/networks/profiler/calibration</u>.

3) Only manufacturer-developed QA/QC procedures are applied to the data and there might still be some undetected errors. Please make your own judgement on questionable data.

APPENDIX A: SITE INFORMATION

	DATE 2017-09-01 00:00:00 UTC
	1
	1
PROF_BELL Belleville 43.78823 -76.11765 152.1 Jef	00:00:00 UTC
PROF_BELL Belleville 43.78823 -76.11765 152.1 Jef	
	ferson 2017-03-03
	00:00:00 UTC
PROF_BRON Bronx 40.87248 -73.89352 59.31 Bro	onx 2017-09-12
	22:00:00 UTC
PROF_BUFF Buffalo 42.99359 -78.79461 185.39 Eri	e 2017-03-29
	20:00:00 UTC
PROF_CHAZ Chazy 44.889 -73.46634 74.29 Cliv	nton 2017-03-02
	16:30:00 UTC
PROF_CLYM Clymer 42.02143 -79.62746 457.45 Cha	autauqua 2017-03-22
	23:00:00 UTC
PROF_EHAM East 40.97039 -72.20094 22.97 Sut	ffolk 2017-04-27
Hampton	19:00:00 UTC
PROF_JORD Jordan 43.06874 -76.46999 129.46 On	ondaga 2016-11-21
	17:57:00 UTC
PROF_OWEG Owego 42.02493 -76.25307 464.45 Tio	oga 2017-05-02
	14:00:00 UTC
PROF_QUEE Queens 40.73433 -73.81585 52.89 Qu	ieens 2017-06-09
	19:00:00 UTC
PROF_REDH Red Hook 41.99983 -73.88412 72.85 Du	tchess 2017-04-17
	20:17:43 UTC
PROF_STAT Staten 40.60401 -74.14849 34.43 Ric	2017-06-08 chmond
Island	20:35:07 UTC
PROF_STON Stony 40.91957 -73.13328 55.1 Suf	ffolk 2018-04-12
Brook	22:00:00 UTC
PROF_SUFF Suffern 41.13303 -74.08597 191.87 Ro	ckland 2017-02-25
	02:15:00 UTC
PROF_TUPP Tupper 44.22425 -74.44105 525.2 Fra	anklin 2017-01-30
Lake	21:00:00 UTC
PROF_WANT Wantagh 40.65025 -73.5054 18.25 Na	ssau 2017-04-26
-	21:00:00 UTC
PROF_WEBS Webster 43.2601 -77.41238 95.6 Mc	onroe 2017-03-23
	17:00:00 UTC

A University at Albany, SUNY Department of Atmospheric and Environmental Sciences and Atmospheric Science Research Center collaboration with the NYS Department of Homeland and Emergency Services and the Federal Emergency Management Administration

APPENDIX B: VARIABLE LIST

The variable list differs for processed and raw data requests.

Table B.1 The variable list for **processed** 2d and 3d data from LiDAR and MWR. The temporal resolution is 10 min, and the vertical resolution is 10 hPa or 25 m.

Name	Units	2d or 3d	Variable Status
range	m	3d	Shared
cnr	dB	3d	LiDAR
u	m/s	3d	LiDAR
V	m/s	3d	LiDAR
W	m/s	3d	LiDAR
velocity	knots	3d	LiDAR
direction	degrees	3d	LiDAR
pressure_level	mbar	3d	MWR (derived)
temperature	K	3d	MWR
relative_humidity	%	3d	MWR
liquid	g/m^3	3d	MWR
vapor_density	g/m^3	3d	MWR
cloud_base	km	2d	MWR
integrated_vapor	cm	2d	MWR
integrated_liquid	mm	2d	MWR
ir_temperature	K	2d	MWR
surface_pressure	mbar	2d	MWR
surface_relative_humidity	%	2d	MWR
surface_temperature	К	2d	MWR
rain_flag	0 = no, 1 = yes	2d	MWR

Table B.2 Descriptions for **raw** environmental LiDAR data. Raw data are only provided upon special request on a case-by-case basis.

Short_name	Long_name	Units
disk_occupation	disk occupation	%
disk_occupation_samples	number of samples for disk	N/A
	occupation statistics	
gps_lat	GPS latitude	degrees north
gps_lat_samples	number of samples for gps lat	N/A
	statistics	
gps_lon	GPS longitude	degrees east
gps_lon_samples	number of samples for gps lon	N/A
	statistics	
internal_dew_point	internal dew point	D°
internal_dew_point_samples	number of samples for internal	N/A
	dew point statistics	
internal_relative_humidity	internal relative humidity	%
internal_relative_humidity_samples	number of samples for internal	N/A
	relative humidity statistics	

internal_temperature	internal temperature	°C
internal_temperature_samples	number of samples for internal	N/A
	temperature statistics	
pitch	pitch angle	degrees
pitch_samples	number of samples for pitch	N/A
	statistics	
roll	roll angle	degrees
roll_samples	number of samples for roll	N/A
	statistics	
stat	statistic performed over interval	N/A
time	time	milliseconds since
		start of day

Table B.3 Descriptions for **raw** radial LiDAR data. Raw data are only provided upon special request on a case-by-case basis.

Short_name	Long_name	Units	Variable Status
azimuth	azimuth angle	degree	From LiDAR
cnr	carrier to noise	dB	From LiDAR
	ratio		
confidence	confidence index	percent	From LiDAR
direction	wind from	degree	Calculated by
	direction		NYSM
drws	dispersion radial	m/s	From LiDAR
	wind speed		
elevation	elevation angle	degree	From LiDAR
error	mean error	N/A	From LiDAR
los	line of sight index	N/A	From LiDAR
range	height	m	From LiDAR
reconstruction_status status for		N/A	Calculated by
	reconstructed		NYSM
	wind data		
rws	radial wind speed	m/s	From LiDAR
sequence	sequence ID	N/A	From LiDAR
status	status	N/A	From LiDAR
time	time	milliseconds	From LiDAR
		since start of	
		day	
u	eastward wind	m/s	Calculated by
			NYSM
v	northward wind	m/s	Calculated by
			NYSM
velocity	wind speed	m/s	Calculated by
			NYSM

W	upward air	m/s	Calculated by
	velocity		NYSM

NOTE: Each LiDAR configuration and scanning scenario gets its own radial NetCDF group. When using this data, the user should read each group's attributes to determine what the data represents. The group ID is subject to change over time, and multiple groups may exist in some instances.

Table B.4 Descriptions for **raw** microwave radiometer netCDF data. Raw data are only provided upon special request on a case-by-case basis.

Short_name	Long_name		netCDF coordinates
lv2 processor	level 2 processor, indicating	N/A	Coordinate
_'	data angle		variable
range	height above the surface	m	Coordinate variable
time_integrated	time values used for	milliseconds	Coordinate
	integrated measurements	since start of day	variable
time_surface	time values used for surface	milliseconds	Coordinate
	measurements	since start of day	variable
time_vertical	time values used for vertical	milliseconds	Coordinate
	profile measurements	since start of day	variable
cloud_base	cloud base height	km	time_integrated, lv2_processor
integrated liquid	integrated liquid	mm	time integrated,
			lv2 processor
integrated_qc	quality flag for integrated	N/A	time_integrated,
	quantities		lv2_processor
integrated_vapor	integrated vapor	cm	time integrated,
			lv2_processor
surface_pressure	air pressure at radiometer level	mbar	time_surface
surface_qc	quality flag for surface observations	N/A	time_surface
surface_relative_humidity	relative humidity at radiometer level	%	time_surface
surface_temperature	air temperature at radiometer level	К	time_surface
ir_temperature	infrared temperature observed from sky	К	time_surface
liquid	liquid vertical profile	g/m³	time_vertical, lv2_processor, range
liquid_qc	quality flag for liquid	N/A	time_vertical, lv2_processor
rain_flag	raining indicator	N/A	time_surface

A University at Albany, SUNY Department of Atmospheric and Environmental Sciences and Atmospheric Science Research Center collaboration with the NYS Department of Homeland and Emergency Services and the Federal Emergency Management Administration

relative_humidity	relative humidity vertical profile	%	time_vertical, lv2_processor,
			range
relative_humidity_qc	quality flag for relative	N/A	time_vertical,
	humidity		lv2_processor
temperature	air temperature vertical	К	time_vertical,
	profile		lv2_processor,
			range
temperature_qc	quality flag for temperature	N/A	time_vertical,
			lv2_processor
vapor_density	vapor density vertical	g/m³	time_vertical,
	profile		lv2_processor,
			range
vapor_density_qc	quality flag for vapor	N/A	time_vertical,
	density		lv2_processor

APPENDIX C: MAJOR DATA GAPS IN MICROWAVE RADIOMETERY DATA (updated through April 2020; some data available even during gap periods)

STID	Gap in data (Dates)	Reason
PROF_ALBA	3/15/18 - 05/9/18	Failed k-band TEC; Instrument sent to Radiometrics
		for repair
PROF_BELL	2/5/19 - 03/7/19	Superblower not active.
PROF_BRON	6/8/18 - 08/3/18	Failed v-band noise diode
	2/5/19 - 3/19/19	Failed laptop hard drive
	*6/14/19 – 6/17/19 &	*Laptop Restart, unable to re-establish
	9/13/19 – 9/16/19 &	communication*
	10/4/19 – 10/8/19 &	
	10/11/19 - 10/14/19	
	& 10/28/19 -	
	11/5/19*	
PROF_BUFF	9/17/19 – present	Roof repairs at host location.
PROF_CHAZ	3/2/17 – 4/25/18	Communication issues then a failed K-Band
PROF_CLYM	6/22/17 – 6/28/17	Unknown
PROF_EHAM	6/1/17 - 8/31/17	Communication issues.
	2/8/18 – 2/22/18	Communication issues.
	6/08/18 - 6/14/18	Failed laptop hard drive
PROF_JORD	6/1/17-8/31/17	Roof repairs; site taken offline
	9/24/17 – 12/21/17	Communication issues
	1/7/18 – 5/7/18	Laptop hard drive failure followed by
		communications issues.
PROF_OWEG	None	
PROF_QUEE	1/1/18 - 3/9/18	Failed k-band; IRT problems
	4/3/19 - 4/10/19	Laptop problems
PROF_REDH	4/11/17 - 4/14/17	Unhealthy K-band and V-band
	2/22/19 - 6/17/19	Failed k-band
	8/7/19 - 8/29/19	Laptop unexpected restart; hundreds of restarts.
	2/23/20 - 3/3/20	Damaged data cable.
PROF_STAT	4/13/19 – present	K-band noise diode failure and Laptop hard drive
		failure.
PROF_STON	6/1/18 - 6/05/18	Unexpected laptop restart.
	10/11/18 – 7/26/19	Failed v-band noise diode
	8/21/19 - 8/27/19	Unknown
	1/22/20 – 1/27/20	Operator Error
PROF_SUFF	9/1/17 - 9/30/17	Unknown
	12/19/17 – 12/31/17	Communications issues.
PROF_TUPP	1/27/17 – 7/28/17	Communication issues.

A University at Albany, SUNY Department of Atmospheric and Environmental Sciences and Atmospheric Science Research Center collaboration with the NYS Department of Homeland and Emergency Services and the Federal Emergency Management Administration

	8/20/17 - 9/6/17	Communications issues.
	1/25/18 - 2/2/18	Laptop died due to power outage; req'd restart
	7/22/18 - 08/08/18	Laptop died due to power outage; req'd restart.
	12/1/18 - 12/5/18	Laptop died due to power outage; req'd restart.
PROF_WANT	9/23/17 - 10/4/17	Laptop died due to power outage; req'd restart.
PROF_WEBS	2/20/18 - 3/28/18	Failed laptop hard drive,
	6/24/19 - 8/7/19	K-Band noise diode failure.
	9/16/19 - 9/30/19	LiDAR stopped due to bad data caused by radome
		buckling.
	3/19/20 - 4/3/20	Communications issues.

APPENDIX D: MAJOR DATA GAPS IN DOPPLER WIND LiDAR DATA (updated through April 2020; some data available even during gap periods)

STID	Gap in data (Dates)	Reason
PROF ALBA	1/1/18 - 01/9/18	LiDAR PC disruptions.
_	1/30/18 - 2/9/18	LiDAR PC disruptions.
	2/26/18 - 3/16/18	LiDAR moved to a new site.
	4/26/18 – 4/27/18	LiDAR PC disrptions.
	2/8/20 - 2/11/20	Internet disruption at site.
PROF_BELL	6/21/19 - 6/22/19	Operator Error.
	2/13/20 – Present	Scanner-head failure.
PROF_BRON	N/A	N/A
PROF_BUFF	9/17/19 – present	Roof repairs at host location.
PROF_CHAZ	10/10/19 - 10/21/19	50% Operation due to a lubrication glitch.
PROF_CLYM	8/22/18 - 9/2/18	LiDAR turned off.
PROF_EHAM	1/26/18 - 2/13/18	LiDAR PC disruptions.
	3/5/18 - 3/22/18	LiDAR PC disruptions.
PROF_JORD	N/A	N/A
PROF_OWEG	N/A	N/A
PROF_QUEE	1/5/19 - 1/10/19	LiDAR PC disruptions.
	3/19/19 - 4/1/19	LiDAR PC disruptions.
PROF_REDH	11/12/18 - 11/26/18	LiDAR PC disruptions.
	12/5/18 – 1/25/19	LiDAR PC disruptions.
	12/24/19 - 12/28/19	Power outage.
PROF_STAT	N/A	N/A
PROF_STON	8/21/19 - 8/25/19	LiDAR PC restart required.
	9/8/19 - 10/1/19	LiDAR power-supply failure. Replacement required.
PROF_SUFF	7/27/18 - 8/2/18	Unknown
	1/23/19 – present	Scanner-head failure (repaired Oct '19) then beam
		failure.
PROF_TUPP	1/1/18 - 3/6/18	Communication issues and scanner PC issues.
	6/1/18 - 2/4/19	Scanner-head and Scanner-PC failure.
	9/19/19 - 10/10/19	Communication issues.
PROF_WANT	3/19/19 - 3/21/19	LiDAR PC restart required.
PROF_WEBS	5/28/18 - 6/19/18	LiDAR Ethernet switch failure.
	2/28/19 - 3/14/19	Scanner-head squeaking due to cold-snap annoyed
		host.
	3/19/20 - 4/3/20	Communication issues.

A University at Albany, SUNY Department of Atmospheric and Environmental Sciences and Atmospheric Science Research Center collaboration with the NYS Department of Homeland and Emergency Services and the Federal Emergency Management Administration